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This  paper  presents  a single, simple,  new and  an accurate  optical gain model based  on adaptive neuro-fuzzy  inference  
system  (ANFIS) which combines the benefits of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs).  
The dynamic optical gain model results are in very good agreement with the previously published experimental findings. 
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1. Introduction 

 
The  computer aided  design (CAD)  models are  

useful tools to  evaluate  the system  performance  at  the  
design stage.   Optical gain is one of these kinds which 
include important knowledge about the evaluation and 
operating characteristics of the laser diodes (LDs).  For 
this reason, accurate and dynamic optical gain models are 
always required. 

The optical gain is defined as the fractional increase in 
photons per unit length.   This  is also called the  modal  
gain  (gm),  though  it  is the  material gain (g) which is 
attained from many calculations  by using different 
theories, assumptions and rough estimation of parameter 
values.  They are related by the optical confinement factor 
Γ  by the relation gm = Гg.  However, the net modal gain in 
terms of quantum well number is equal to gm = NГg – αtot , 
where N is the number  of quantum-wells (QWs),Γ is the 
optical confinement factor per well and αtot is the 
combination of intrinsic and transmission losses. For an 
expanding rate of applications, an understanding of the 
optical gain spectra is very significant in order to obtain a 
dynamic model with predictive capability for the gain 
spectra of a specific laser diode structure.  

There are different approaches in terms of optical gain 
for theoretical [1] and experimental sides [2]. Theoretical 
calculations usually require a large amount of 
computational time. On the other hand, numerous different 
and widely used experimental techniques proposed for 
optical gain which provides different advantages and 
disadvantages [2]. However more reliable measurement 
techniques are still needed. 

There are successfully implemented previous models 
for GaAs QW LDs [3], InGaAsP QW LDs [4], InGaAs 
QW LDs [5], temperature measurement system [6] and 
linewidth enhancement factor [7] with ANNs, which is 
presented in literature. In this work, a new method based 
on the ANFIS [8] for the modelling of net modal peak gain 
of GaInP LDs with respect to different number of QWs 

and different injection levels is presented (Fig. 1). 
Different membership functions (MFs) with different 
network configurations are used in order to minimize the 
root mean square (rms) errors in terms of the ANFIS 
structure. The model completely agrees very well with the 
experimental results [9].  

 

 
 

Fig. 1. ANFIS model structure 
 

 
2. ANFIS modelling 
 
ANFIS is a technique for automatically tuning 

Sugeno-type inference systems based on training data.  
It combines the benefits of ANNs and FISs.  It maps 
inputs through input  membership funct ions  and 
associated parameters, and then through output 
membership functions to outputs. MF is a function 
that specifies the degree to which a given inputs 
belongs  to a set or is related to  a concept. 

For simplicity, it is assumed that the ANFIS under 
consideration has two inputs, x  and y, and one output, 
z. To present the ANFIS architecture, four fuzzy rules 
based on a first-order Sugeno model can be expressed 
as [10]: 
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Rule 1: IF x is A1 and y is B1 THEN z1 = p1x + q1y + r1 
Rule 2: IF x is A2 and y is B2 THEN z2 = p2x + q2y + r2 
Rule 3: IF x is A3 and y is B3 THEN z3 = p3x + q3y + r3 
Rule 4: IF x is A4 and y is B4 THEN z4 = p4x + q4y + r4 

 
where x and y are the crisp (well-defined) inputs. Ai and Bi 
are the fuzzy sets (linguistic labels as short, medium, tall 
etc.), zi are the outputs, pi, qi and ri are the exact constants. 
To put it in a different way, they are linear parameters of 
the nodes in the then part of fuzzy if-then rules, and are 
called consequent parameters. 

One possible ANFIS architecture to implement 
these four rules is shown (Fig. 2). The architecture of 
ANFIS consists of five layers.  A circle indicates a fixed 
node whereas a square indicates an  adaptive node (the 
parameters are changed during training). 

 

 
 

Fig. 2. ANFIS structure for two-input Sugeno fuzzy model 
with four rules. 

 
Layer 1: Parameters in this layer are changeable. The 

outputs of layer 1 are the fuzzy membership grade of 
inputs. In the following presentation OLi denotes the output 
of node i in a layer L. Here O1i is denoted as the output of 
the ith  node in layer. 
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function. For example, if the triangular membership 
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where parameters a, b and c decide the shape of 
triangular MF. 

Layer 2: The nodes in this layer are labelled by π  

Fig. 2.  Each node in this layer satisfies the firing 
strength (wi) of a rule.  The firing strength may be the 
result of an AND or an OR operation, and it shapes the 
output function for the rule.  In addition, it is known as 
“degree of fulfilment“.  The outputs O2i of this layer are 
the multiplication of inputs, that is to say, the inputs are 
the corresponding degrees from layer 1. 
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Layer  3:  The  nodes  in  this  layer  are  labelled  

with  N to  indicate  that performs  a  normalization of 
the  firing strength from  previous  layer.   The outputs 
of this layer are named as “normalized f i r i n g  
strength“. The output of each node in this layer is 
given by: 
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Layer 4:  The output of each node is simply the 

product o f  normalized firing strength and a first 
order polynomial: 
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where zi is a linear function of input variables. 

Layer 5: The single node in this layer is labelled Σ. 
Its total output of the summation of all input is: 
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Optimizing the values of adaptive parameters is vital 

importance for the performance of the adaptive system.   
In this ANFIS architecture, there are two adaptive layers, 
namely the first layer and the fourth layer.  Layer 1 has 
modifiable parameters related to the input MF. The 
parameters in this layer are called premise parameters or 
antecedent.  Namely, it means the initial (or “if“) part of a 
fuzzy rule.  Layer 4 also has three modifiable parameters 
(pi, qi, ri) connecting with the first-order polynomial. 
These parameters are called consequent or conclusion 
which means the final (or “then“) part of a fuzzy rule. 

The task of the training or learning algorithm for this 
structure is to tune all modifiable parameters to make the 
ANFIS output match to the training data.  This 
network is trained based on supervised learning.  Hence, 
our target is to train adaptive networks to be able to 
approximate unknown functions given by training data 
and then find the exact value of the above parameters. 

 
 
3. Results and discussion 
 
In this paper, the net modal peak gain model of 

GaInP QW LDs with respect to different number of QWs 
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and different injection levels is implemented using 
ANFIS structure. Although there are various optical gain 
models presented with respect to different parameters in 
literature, this model is specifically selected in order to 
show that an efficient and dynamic optical gain model can 
be developed with minimum number of experimental data. 

In the proposed model, the optimal number of epoch 
is found to be 45 for training. The number  of membership  
functions  for both  input  variables; current density  and  
number  of QWs  are 6.  The number of rule is 36.  It is 
clear from Eq.  (3)  that the triangular MFs are specified 
by three parameters. Consequently, the ANFIS used here 
contains a total of 144 (108 + 36 = 144) fitting 
parameters of which 36 (6x3 + 6x3 = 36) are the premise 
parameters and 108 (36x3=108) are the consequent 
parameters. 

 

 
 

Fig. 3. The comparison of the net modal peak gain and 
ANFIS results for GaInP multi-QW laser diode. 

 
The  model  is trained with  the  hybrid  learning  

algorithm  which  shows the  best  results  among  other  
learning  algorithms  used in the  analysis.  The proposed  
approach successfully predicts  the  net  modal  peak  gain 
values  of GaInP  QW LDs with respect  to both  different 
levels of current density  and different number  of QWs.  
In order to validate the proposed model, ANFIS results are 
compared with the experimental data [8] shown in Fig. 3. 
which are in very good agreement. Although the 
experimental data set is limited, the rms error for the 
hybrid algorithm is 3.15x 10-4 which supports the validity 
of the ANFIS model. In addition to that, the model 
tremendously reduces the computation time of which the 
training time takes only a few seconds after finding the 
most suitable network configuration and learning 
algorithm.  Hence, the proposed model is very quick after 
being trained and does not require complicated 
mathematical functions with strong background 
knowledge. 

This kind of similar models can be effectively used by 
optical design engineers for the purpose of quick 
simulations of the optical systems to evaluate the system 
performance. 
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